Author(s): E. J. Lesleighter; B. P. Tullis; D. Andrews
Linked Author(s): Blake P. Tullis, Darryl Andrews, Eric J Lesleighter
Keywords: Stepped spillways; Models; Pressures; Transients; Cavitation; Aerators; Stilling basins
Abstract: Susu Dam is an RCC Dam under construction in Peninsula Malaysia. The dam design has been carried out by SMEC International in its offices in Kuala Lumpur. The dam is some 90 m tall. The overfall stepped spillway provides for discharges to enter a hydraulic jump stilling basin for energy dissipation, prior to passing through a culvert under a roadway. The spillway was subject to hydraulic model testing at the Utah Water Research Laboratory of Utah State University (USA), at a length scale of 1:30. The hydraulic performance of the spillway design was evaluated up to the 4,700 m3/s Probable Maximum Flood (PMF) discharge (almost 1,000 L/s model scale). The spillway was tested through a number of configurations, prior to the development of the final arrangement. The purpose of the paper is to describe the modelling detail, and then focus on the flow behaviour at the stair-stepped spillway chute with 2.4 m high steps, in particular the piezometric pressures and transient pressures on the tread and riser of the steps. The spillway chute converged from ~100 m at the crest to 78 m at the bottom at entrance to the stilling basin; the unit discharge entering the stilling basin was ~ 60 m2/s for the PMF. Of particular interest was the occurrence of negative pressures on the steps, and the paper will describe the transients for several discharges from the AEP 1 in 1,000 up to the PMF; the results indicating very low pressures into a cavitation region. The design provides for an aerator across the spillway in order to counter the effects of possible cavitation. Results will be presented with and without the aerator operating. The paper provides useful design information for the hydraulic design of stepped spillways.
DOI: https://doi.org/10.14264/uql.2014.20
Year: 2014